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ABSTRACT

The current status of computational capabilities for calculating viscous-
; inviscid transonic flows other than the solution of Navier-Stokes equations is
i presented. Techniques for solving transonic inviscid flows and compressible .

integral boundary layer methods are reviewed, and systems for strong viscous- ;}‘;
inviscid interactions are described. Generally, the transonic viscous-inviscid :
] interaction is characterized by a subcritical boundary layer with a supersonic y
outer stream. The thickening boundary layer produces a pressure rise which 3
causes further thickening of the boundary layer. The physical flow is best .
modeled by direct coupling of the viscous and inviscid systems to allow ',1
immediate interaction between the shock wave and the boundary layer. It
appears that the method of integral relations for the outer inviscid flow, i
I combined with an integral boundary layer scheme, possesses such a capabil- i ]
ity. To facilitate the computation, an hybrid approach to the transonic E
inviscid solution, which consists of the finite difference method for solving
the overall transonic inviscid potential flow ficld and the method of integral j.
X relations for solving Euler’s equation in the shock region, is suggested.
Finally, the application of the steady two-dimensional methods to the quasi
two-dimensional problem on axisymmetric stream surface of a cascade flow
at transonic speeds is discussed.
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I. INTRODUCTION

Recent advances in numerical techniques have provided a powerful tool in transonic flow
rescarch. A complete tull potential flow solution is now attainable in @ matter of minutes by the
finite ditference  relaxation scheme. Even a fully inviscid (nonisentropic) solution can be deter-
mined numerically by the unsteady finite difference approach at the cost of large computer time
or by the method of integral relations with certain iterative procedures. The real transonic flow
problem, however, is complicated by the viscous effect. The strong viscous-inviscid interaction
caused by the shock wave thickens the boundary layer rapidly, and the flow eventually separates
from the surface.! =0 In such cases, the surface flow properties cannot be specified in advance, as
in the usual formulation of boundary-layer theory, but are determined by interaction of the
outer inviscid flow and the inner viscous flow near the surface. This has been referred to as the
transonic viscous-inviscid interaction problem.

The problem of the viscous-inviscid interaction in the transonic region is complicated by the
fact that the inviscid flow field is governed by mixed elliptic and hyperbolic partial differential
equations for a compressible fluid flow. Because the major portion of the flow field is of the
clliptic type, the velocity at the edge of the boundary layer at any location depends on the com-
plete displacement thickness distribution. At the same time, the solution must satisfy the con-
straints characterized by the inviscid supercritical flow -the regularity condition at sonic points.
The complete solution, therefore, involves tedious iterative procedures. Some advances in the
area of laminar viscous-inviscid interactions at transonic speeds were made by MacCormack 7
Klineberg and Stegcr,8 Brilliant and Adamson,? and Tai.l0 Although the laminar flow yields an
adequate model for assessing the basic mechanism of the strong viscous-inviscid interaction proc-
ess, flows of practical interest at transonic speeds are turbulent because of high Reynolds number
conditions. Theoretical treatment of the transonic turbulent viscous-inviscid interaction is fur-
ther complicated by the turbulence. In the past several years, remarkable efforts have been
devoted to the topic. The problem has been treated with various levels of assumptions.] 1-18
most cases, however, theoretical considerations were limited to weak shock conditions. The
problem of strong viscous-inviscid interaction at transonic speeds was discussed by Klineberg and
Stegcr.8 and Tai. 1015

Generally, the problem of transonic viscous-inviscid interaction is best described by the
Navier-Stokes equations. Because of extensive computer capacity requirements and other nu-
merical problems, a complete Navier-Stokes solution for the subject problem still seems to be

19° Researchers will continue for many years to rely on other procedures

some time in the future.
to adequately account for the viscous effects. Among various techniques, the coupling of a valid
transonic inviscid solution with an integral boundary-layer method seems to offer an adequate
approach to the problem.

In the present paper, therefore, a review of both transonic inviscid solutions and the integral
boundary-layer methods will be presented in Sections 1l and 111, Because the review will not be
exhaustive to cover such a field of phenomenal research activities, emphasis will be placed on

prediction methods, cither viscous or inviscid, which are adequate for handling the subject of
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viscous-inviscid transonic flows. In Section 1V, the problem of transonic viscous-inviscid inter-

action is described and calculation procedures are presented along with some theoretical results.
Finally, the application of the methods developed for flows around airfoil to cascade flow prob-

lems is discussed.

1I. REVIEW OF TRANSONIC INVISCID FLOW SOLUTIONS
Theoretical methods for solving the transonic inviscid flow have been advanced substantially B
in the past ten vears. Because of the nonlinear nature of the flow equations, virtually all the :
solution procedures have been developed numerically. Solutions are achievable only with the aid I
of high speed computers, ' i
1. BASIC FLOW EQUATIONS i ]
i 1
The basic system of equations that govern an inviscid compressible fluid flow. without body ”;
foree, is: ‘
¥
N op i ]
Continuit —_ . =
y At +Vv - pq 0 (1) 3;
Momentum m + lVP 0 (2) ‘
Dt P 4
i
DS De D /1
Entro v v P—(—) '
Py TS = * Poely (3) |
{
e
where ?
p = static density, P = static pressure, g = velocity, \
t = time, S = entropy. T = temperature,
¢ = internal energy. ‘F
i
Eq. (3) can be used to compute the rate of change of entropy of a fluid particle associated with i
the shock wave in a supercritical flow. z
For regions prior to the shock wave and the far field, the changes of state of the fluid par- g

ticle are isentropic

DS,

T)_t- =0 or§; = Constant ()
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instead of the energy equation, therefore, a simpler isentropic relation may be used
P [pY
Py Po (3)

For regions following the shock wave, where the fluid has a finite increase in entropy (or a
decrease in the total pressure), the isentropic relation applies along a streamline

P (o) (52 - Sl)
P, \no/ P\ ¢ (6)

where subscripts 1 and 2 denote states before and after the shock wave, and o, the stagnation
value. ¢ is specific heat at constant volume.

The change of entropy (S5-58) is normalty small for transonic flows. However, because of
the corresponding change of the downstream conditions, it may influence the location of the
shock wave and thus alter considerable portions of the entire flow. Nonetheless. the flow behind
the shock wave is still isentropic along a streamline. The new isentropic relation. however, must
be based on a new entropy level which is slightly higher than its freestream value. The new
entropy level differs from one streamline to another because the shock strength encountered on
each streamline difters. Therefore,

S, # Constant (7)

Because of the current status of numerical solutions for transonic viscous-inviscid inter-
action flows, the present paper will cover only two-dimensional, steady flow conditions. A brief
discussion on the application to the unsteady, three-dimensional flow associated with turbo-
machinery will be given in Section V.

a. Full Inviscid Flow Equations

For two-dimensional, steady flows, the preceding system of equations reduce to the tfollow-
ing form in Cartesian coordinates (x,y):

2 (pU) | 2(pV) _
9x 9y

0 (8)

oU 10)
ox

U = N
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Pl.:(.ﬁ.) L.,([,(' _ ) (1
o Po Ly

where Uand V are velocity components and note that §; = constant and S, # constant.
I ‘ b. Full Potential Flow Equation

If the entire flow field is assumed isentropic, the flow is everywhere irrotational. The veloc-

ity is related to a potential function. &, as

"

ob
U = =— = grud ¢ (12)
1 axi

The exact equation for the potential function for two-dimensional compressible flow cun

be written in Cartesian coordinates as

2 2 X 2 - 2 = (]3)
(a~ - ‘px)q’xx - ldlebyd)xy + (a <!>y)<byy 0
where
2 2
‘-p = _a(—b (l) = a;‘: q) = L‘b (]4)

and a is the speed of sound. Eq. (13)is elliptic if the local Mach number M < | and hyperbolic
itM > 1. lhus Eq. (8) through (1 1) are reduced to a single ditterential equation, Eq. (13).

Once the solution is found, the velovities are calculated from Eq. (12). Eq. (13)is valid only in

cases with weak shock waves where the change of entropy can be neglected. By definitv.on of the
, irrotational tlow, there is no transonic wave drag.

¢. Small Disturbance Equation
b . Further simplification of the equation system is to assume the perturbation velocities being
ﬁ" small, resulting in the transonic small disturbance equation

, M2y + 1) .
| (1= MZ) Oy F 0y = =B 6.0, (15
' 5
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where ¢ is the perturbation potential function and other symbols have usuval meaning.

The validity ot this equation, of course, bears directly on the assumptions made, ic., weak
shock waves, thin atrfoil at small angle of attack. And again, there is no transonic wave drag.
In all the foregoing systems, the viscosity is commonly neglected. The problem in coupling

the viscous solution will be discussed later.
2. NUMERICAL SOLUTIONS

IFor convenience of discussion, numerical methods for the transonic inviscid problem can
be classified into (a) finite difference method, (b) method of integral relations, (¢) hybrid meth-
od. td) finite element method, and (¢) integral equation method. A brief review of these meth-

ods is presented below.
a. Finite Difference Method

The finite diftference techniques tor solving the transonic tlow equation were introduced
carlier by Emmons in 19480 using central differences in the subsonic region and upwind differ-
cncing in the supersonic zone. The technique was greatly improved by Murman and Cole?! along
with a successive line over-relaxation scheme. Through subsequent improvements in the area of
different ()pcrzitor523'34 and suitable and faster relaxation schellles,25'28 the method has been
highly developed for solving the full potential flow equations, as well as the transonic small-
disturbance equations. Survey papers given by Yoshihara®? and Bailey30 summarizing early
work in the use of the finite difference method and those of Jameson,31 Murman.32 and

33 cover techniques implemented in the current widely used codes -such as those by

35

Ballhaus,
34 . 25 .
Bauer et al..”™ Jameson =2 and Carlson.
To illustrate the finite difference scheme in solving the transonic potential flow equation, a
comprehensive discussion is given by Murman.3? For simplicity. however, the approach is casily
understood with reference to a Cartesian coordinate system. For this reason, the analysis devel-
oped by Carlson33 using Cartesian coordinates is summarized below.
The full potential flow equation, Eq. (13). can be recast into the form of a perturbation

potential ¢
(@ =U%)py = UV, + (a* ~V)o, = 0 (16)

where U and V are given by

U=d, =qe,l(cosa + ¢,)
a7
V=4 =q,Gina+ éy)

6
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along with boundary conditions of velocity normal to the airfoil surface being zero and a veloc-
ity potential satistying field behavior at infinity.

To incorporate the coordinate stretching in the physical plane and to avoid computational
problems in the supersonic region, the potential flow equation is further arranged as

4
qQ-

where

[Urd0; + 20Vtesy, + V2etes,),]

Kol

r«l'_

bss
(19)

SN [sz(t}pg)s - 2UVigg,, + Uzg(gtbn)n]

'le_'

The S and N denote the vector parallel and perpendicular to the local velocity. respectively, and
f and g are functions relating the Cartesian coordinates (x, y) and stretched coordinates (¢.7).
respectively, as

._ﬁ
]
1%

oS
1]

Q.l o

<lIi3

(20)

j=%
>

The finite difference expressions with reference to a mesh system shown in Fig. | are. for
example, for contributions to NN When q2 > at:

{ - : + _ 4
“¢E)E = A_Ezgfl+%(¢l+l‘l-¢lj) - 'l—l/l(¢l|_¢l—l,])} (21)
For contributions to ¢gg when > > atandV >0

l hl
(f¢£)£ = Zz—zgfi_y:((ﬁij“ﬁi_ l,j) - fi-3/2 (¢i—l.j - ¢i-—2‘j)§ 2

=




These equations are so-called upwind difference formulas for supersonic points. For the

subsonic region, a central diftferencing scheme is employed, for example,

oy ‘ ‘ ¢ I ,
“(bg)é = A_E?-{ti"’l/: ¢i+ I,j - (ti+% + ti-'/:) -“7 +(] —W)¢lj (_3)

where the relaxation factor w has been incorporated into the difference tormulas. When these
cxpressions, Eqs. (2 1) through (23), are substituted appropriately into Eqs. (18) and (19) or
Fq. (16), the result is a tridiagonal system of equations that can be solved for the current values
of the function ¢ column i. Numerical stability is achieved by the incorporation of both old ¢
and new ¢* values into the finite difference formula and the inclusion of time-like derivatives
in the relaxation process. The result obtained by Carlson’s code3d is very close to that using
the Jameson code. ™ see Fig. 2. Other applications of the finite difference method were re-
ported elsewhere 3037

An important feature in formulation of difference equations is the consistency condition
with the original partial differential equations. Murman== discussed the topic in great detail and
classified the difference equations for transonic flows into fully conservative form and not fully
conservative form (or quasilinear form). Fig. 3 shows the difference in computed results using
these two forms. [t is observed that the nouconservative form yields a weaker shock wave but
located slightly more upstream than that determined by the fully conservative equations.
Murman has pointed out deficiencies in using the nonconservative formulas. Nonetheless, the
nonconservative system is preferred by most users because of its better correlation with the
experimental data. Tai’® remarked that the momentum deficiency resulting from the non-
conservative form has similar effects on the strength and location of the shock wave resulting
from the total pressure deficiency aft the shock caused by the entropy rise across the shock wave.

It will be further discussed in the next section.
b. Method of Integral Relations

The method of integral relations (MIR) provides another avenue to the solution of transonic
flow problems. Previous applications of the method to transonic flows past airfoils include those
by Holt and Musson.‘m Melnik and Ives 40 Sato 3! and Tai%? for various flow conditions in the
transonic regime. A review of the method in transonic flow is given by Holt.*} The main advan-
tage in using MIR is its ability to solve the full inviscid flow equations directly ; thus the assump-
tion of isentropic flow is not necessary.

In the numerical solution, it is convenient to write equations in nondimensional form
normalized by treestream values. Therefore, the full inviscid flow equations, (Eqgs. (8) through

(1IN, are recast as
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i
i
o a9 (pU) a(pV) _ ,
Continuity ax + ay 0 (24)
i S ) b
x-Momentum — (KP+pU") + — (pUV) =0 (25
% oy
~Moment —a-( UV)+-a-(KP+ Vi) =0 (2
y-Momentum Fils 3y P 26)
i S -§,
P = pY exp\— 27
LV
where K = I/(7M°2°).

The boundary conditions are

; ponent equals to zero, i.e.,

as follows: at the airfoil surface, the normal velocity com-

qn=0

and at infinity, the flow is undisturbed, ic..

aA
3% (x,y. U, ...

Briefly. in applying the system of flow equations must be written in divergence form

2

B(x.y.U....) = Qx.y.U) (28)

The divergence form of Egs. (24) through (26) may then be integrated outward from the airfoil
surface (but not necessarily normal to the surface) to each strip boundary successively at some x
station. This procedure reduces the partial differential equations to ordinary oncs. To perform
the integration, the integrand is approximated by interpolation polynomials. for example A, by

N

a (x)(y—y(,)k ()
0

k

-~
A

- -
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where

N = the number ot strips
a (X)) = constants eviluated at strip boundaries
y,, = the location of the base strip boundary.

In principle. the actual flow varation may be represented more closely by an increasing number

o strips,

Using a basic second-order approximation tor Eq. (29), the method can be implemented
with up to tive or six strips tor desired accuracy. The process is illustrated in Fig. 4. The idea is
1o treat the whole integration domain as a series of different effective regions: a small number of
strips may be used within cach region. Three effective regions are designated by strip boundaries
(01 Dy acboerand (8.0, 8). In cach effective region, the flowtield is divided into two strips
and approximated in the usual way by a second-order polynomial. The MIR is first applied to
the boundaries £, 1. ¢ with the purpose of determining the shape of a streamline 5 and flow con-
ditions along it. On the uppermost boundary ¢, freestream conditions are assumed to apply.
Secondly . MIR is applied along boundaries a, b, and ¢ to determine conditions along a streamline
b. closer to the profile. Finally. MIR is applied in the disturbed part of the field along the
boundaries 0, 1. and 2.

The resulting ordinary differential equations take on the form along boundaries a and b. for

example

au,
m-=tl(x.y Ud.Va....) (30)
qu
I~ fyx.y Uu.Vu...,b (3
duy
™ -8 (x.y. U Va. ) (32)
th
-dT—gztnya.Vu.,..) (33)
1
-1
¢, -u-v2\’
p =\—— (34)




where

o0

The setof bgs. 31) through (34) are then solved by the tourth-order Runge-Kutta scheme.
Fhe solution is obtained by initial value techniques associated with a two-point boundary-value
problem. For the flow over a lifting airfoil, the complete solution procedure consists of iterative
processes tor handling the regularity condition at the saddle point (sonic point), for determining
the shock location and tor entorcing the Kutta condition.

The method allows the exact Rankine-Hugoniot relations to be applied at the shock for

determining the tlow properties aft ot the shock

(y+ 1) MI
- —_— (38)
P27 Py - M, +2
hl
yMy -1
I (39)
, P, Pyfr o+ T
Fhe change of entropy is obtained in terms of Py and py
P,
S1-Sp = ot —= (40)
P
‘ . where S, viries from one streamliine to the other.
J Figs. S and 0 show typical results obtained by the method of integral relations, These
figures are taken from Tai** and include data from Magnus and Yoshihara ¥ Stivers 3
‘ Garabedian and Korn 40 Krupp and Murman.*7 and Kacprzynski ot al 4 Reasonable agreements
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between the theory and experiment were achieved except in the neighborhood of the shock

wuve and boundary layer. Note the effects of change of entropy (Fig. 5) and of the shock angle
i (Fig. 6) were explicitly evaluated. The increase in entropy corresponds to the decrease in total
prc.\'surc.'w Physically, the change of entropy creates vorticity behind the shock wave; it has a

cumulative effect in the far downstream and consequently feeds back to the shock itself 42 In

the case of a finite increase in entropy across the shock wave, it was found that the shock

. . . o )|
wave. The disagreement there is attributed to a viscous-inviscid interaction between the shock i
strength was weakened and the shock location moved forward. It has a similar effect of the t

momentum deticiency of the nonconservative form in the finite difference method, although

their mathematical bases are completely difterent.

c. Hybrid Method

The finite difference scheme and the method of integral relations for solving the transonic
flow problems offer different kinds of advantages and disadvantages. The former is well devel-
oped, and casy for the user to implement it is limited to the isentropic flow assumption (weak

shock wave assumption)* and suffers mathematical inconsistency of the nonconservative formu-

la. For the method of integral relations, on the contrary, the situation is opposite. It solves
! Euler’s equation with a small computation requirement; but because of the multiple iterative
processes involved, the whole solution procedure cannot be automated without man-machine
interactions. To take advantage of the both and yet avoid their shortcomings. a hybrid method
N X combination of the finite difference method and the method of integral relation appears to
offer an unique capability for solving transonic flow problems with shock waves.

The central idea for the hybrid method proposed by Tai, is illustrated in Fig. 7. The overall
mixed flowfield is governed by the potential flow equation except the shock region. In the shock
region and the region downstream of the shock. the flow is governed by Euler's equation that
allows entropy change, creating the transonic wave drag. First, the potential flow equation is
solved by the finite difference relaxation procedure. The flow properties so calculated are valid
’ up to the boundaries of the shock region marked by solid dots in Fig. 7. The values at these
? houndaries are then taken as the initial condition (those along the normal line) and the boundary
vondition (those along the streamwise line) for the numerical solution by the method of integral
refations. In so doing. the major difficulty in treating the saddle point (sonic point) regularity
condition associated with the method of integral relations is avoided and . therefore. in general,

the procedure can be fully automated.,
The concept is now being developed into a complete numerical procedure.

4

*The finite difference approach using Euler’s equations has been developed using unsteady techniques4 with

J exlensive computer time and storage requirements.




d. Finite Element Method

The use of the finite element method in transonic flows is relatively new. A few references

50.51

can be found in the literature. Because of problems of hyperbolic behavior, the work has

been limited to the small disturbance equations.

The following brict discussion ot the method is taken from Chan and Brashears. S0

In using the finite element method. the transonic small disturbance equation, Eq. (15). s

rewritten as
Oy T ¢yy = 41)
where
f=1M2 + M2(l+y) 42
P o V) O Ok (42)
along with appropriate boundary conditions

q, = 0 on the airfoil

Ve

1]
o

at infinity

Using Galerkin's weak form, Eq. (41) is then transformed to

/f (N )dxdy]d)j __/]-Ni fdxdy = 0 (43)

In Eq.(43): N, and N represent the shape functions. ¢ s ar¢ the unknown parameters. the
indices iand j run from 1 to the total number of unknown parameters, and the integrations are
to be performed over the entire domain under consideration.

Upon integrating by parts. there resuits

S; 9 = Li (44

where

Sij - _/:/;Ni.x Nj.x + Ni,y Ni,y) dxdy (45)
L, = f N-—ds —ﬂ- M + Mg “+7)ka¢|\] Ng xx @¢ dxdy (4061
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the original transonic problem is thus trunsformed into a system of algebraic equations in the

torm

.o(n) = g (n=1)
Sij‘bj Li (47)

{r

where ¢>| " the nth step solution and LU - D) is the load matrix evaluated by using the previous

solution  Fq. (47 is to be solved subject to certain prescribed convergence criterion.

Fig. 8 shows i sample result of the finite element method tor a supercritical flow past an
NACA 64006 airtonl: tuken trom Ref. SO, Using a triangular cubic element with 136 modes,
the agreement between theory and cxpcrimcnt": iy only qualitative. Generally, the method

underpredivts the flow hefore the shock wave. Comparison between the finite element solution

and the fire dittference solution ot a transonic tlow is made by Hafez et al.>1 as shown in Fig. 9.

Ao the Tiute clement method seems to underpredict the tflow near the leading edge of the air-
totl Vartous ways tor mproving the finite element method in handing the mixed flow region

and extension to the tull potential flow equations have been discussed in Refs. SO and S1.
e. Integral Equation Method

As opposed to the storementioned methods, the integral equation method has been re-
garded as o seminumerical method in the sense that it employs analytical functions for represent-
mg the integrand . The integral equation was derived by Oswatitsch®? thirty years ago for the
solution of the transonic small-disturbance equation, The method was further explored by
Gullstrand > Spreiter and Alksne > and Norstrud 5 The integral equation method requires
least numenical work. The disadvantage of the method is the difficulty in achieving an adequate

37.58 suggested that the

ticld integral for approximating the complicated mixed flow field. Nixon
accuracy of the mtegral equation method can be improved considerably by applying the field
mtegral in regions of strips which divide the entire flow field. The accuracy of the integral can
he aincreased simply by increasing the number of strips. The computational region can be there-
tore . extended to infinity” without introducing further numerical complexity. Fig. 10 shows

some ty preal results obtained by using the extended integral equation method M8
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I1l. REVIEW OF INTEGRAL BOUNDARY-LAYER METHODS

1. LAMINAR FLOWS

a. Laminar Boundary-Layer Equations

The governing equations for a compressible laminar boundary-layer flow in coordinates
parallel and normal to the surface (s, n) are, with flow properties normalized by their freestream

values.

Continuity 3 (pu) + 3 (pv) _ a8)
0s on

s—Momentum du + ou _ Kd_P. I _ﬂ[ a_ll_] 49

> ) PR TP - T Poo Vool AN k50 (49)

where ¢ is the chord length of an airfoil.

The boundary conditions are as follows: at the surface, u =v = 0:at the edge of the
boundary layer, u = U,(s)

b. Klineberg-Lees Method

The method was originally developed for analyzing the supersonic viscous-inviscid inter-
action problem.sg Basically, the compressible flow equations, Eqs. (48) and (49) are trans-
formed into an equivalent incompressible form by means of the Stewartson transformation .60
The velocity profile based on an incompressible similarity solution can. therefore. be used in the
integral approach. The resulting partial differential equations in a transformed incompressible
plane, along with the equation for the rate of change of mechanical energy. i.c.. the moment of
momentum, are then integrated across the boundary layer from n = 0 to §. In performing the
integration, the parameter a is employed to denote the velocity profile tor both attached and
separated boundary layers. Profile quantities are then defined as functions of a.

The resulting ordinary differential equations are

ds; .

K = Fl (Si,a.Me) (50
d,
= = F, (8].0.M,) (1)

e bl A, T P Y P




.

nd

= Fa8;.a.M) (52)

4

where

8. = boundary layer displacement thickness
a4 = profile parameter
M, = Mach number at the cdge of boundary layer.
Functions | F5 . and Fy depend on variables 8?. a, M, and intermediate parameters
H.J. Q. R.and Z, which have been defined as functions of a in Ref. 59. Curve-fitted poly-

nomials, based on the similarity solution of the classical boundary-layer theory, are given in Ref.

39 for attached and separated flows, and in Ref. 61 for wake-reverse and wake-forward flows.
The original ordinary system given by Ref. 59 hus a temperature parameter. To simplify the
discussion. it has been excluded in the above system for adiabatic flows.!0

The basic features of the method are that (1) the boundary-layer properties depend on the
variable a, which directly describes the velocity distribution, and (2) the velocity at the edge of
the boundary layer is treated as a dependent variable, rather than a given quantity as in the con-
ventional boundary-layer approach. The static pressure can, therefore, be determined by the
interaction between the outer inviscid flow and the inner viscous layer near the surface. Such
an arrangement allows direct coupling of the viscous system with inviscid equations for handling
the viscous-inviscid interaction problem to be discussed later.

Fig. 11 shows the resuits of a typical computation for an adiabatic flow by the Klineberg-
Lees method. The two solutions represent interactions beginning in the weak-interaction zone
for both a finite and a semi-infinite flat plate. It is evident that a small change in the perturba-
tion value can generate very different integral curves because of the high degree of nonlinearity
of the equations in the subcritical region. The weak interaction solution corresponds to the
conventional boundary-layer formulation, i.e.. the M, is “impressed™ by the inviscid solution
rather than calculated by the viscous-inviscid interaction. Note that the boundary-layer dis-
placement thickness rises drastically due to the strong interaction.

2. TURBULENT FLOWS
a. Turbulent Boundary-Layer Equations
The governing equations for a compressible, adiabatic, turbulent boundary layer in coor-

dinates parallel and normal to the surface (s, n) are with flow properties normalized by their

freestream values,
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Continuity Frami e 0 (53)
Moment du N au dp N | ] du s
N=—1 : — — — — — —
offientum PUSs T PV on ds  po Vot on a Bn) (54)

where 8 is an eddy viscosity parameter.

The boundary conditions are as follows: at the surface, u = v = 0. At the edge of the
boundary layer,u = U.(s).

b. Kuhn-Nielsen Method

In the Kuhn-Nielsen method,!? the above equations are transformed into incompressible
plane (£, n) with the aid of the Stewartson transformation®0 along with the assumptions that the
viscosity varies lincarly with the temperature and that the Prandtl number equals unity. The
velocity profile in the transformed plane used in performing the integration across the boundary
layer is

T=u {25W(i+qn*) + 5.1 - (3.39n++5.l)e'037n+] (55)

+ 0.5 ug [l - Cos (11%7)

where

ug = wake velocity
u. = friction velocity
nt = umnfy

It is composed of an inner part, consisting of a laminar sublayer and the law-of-the-wall function.
and an outer part, a wake function. It is a modification of Cole’s law®” with a laminar sublayer
added.

The eddy viscosity model used in the Kuhn-Nielsen method is an extension of the two-
layer model. For attached flow, the inner layer is represented by an expression given by

Klcinstein .63
- U F 2
B=1+005333 M _ o4~ 4 05 (0.41 —) ]} (30)
- UT ll,,

17

TPV pry




In the outer layer, the Clauser expression along with an intermittency function of Klebanoff®*

is employed

-(8%/1, (dPJdE)/ 15
, T,8*Re,, (57)

[l + 5.5(%)6]

For separated tlow, the entire profile is based on 4 form given by Alber®?

g = 0.013 + 00038 ¢

0.013 T,8*Re,,

g = 5 (58)

7

[l + 5.5(5) ]
There results two ordinary differential equations
dUT dé dUe
A“ E+ Al: a—x' + A13 K = - vuTluTIUe (59)
0
A duT+A d6+A dUe_ v . o0
21ax 22 dx B dx oy Buydy (68)
[
0

where Ay through A, are defined in Ref. 12, The dependent variables are u_. 8. and U,. In
the computation, U, is prescribed except in the region near separation. u_is prescribed, and U,
is calculated.

The results of a typical calculation for the flow over a bump at transonic speed are shown in
Fig. 12. The viscous and inviscid solutions agree within one percent. For comparison. the meas-
ured 5* and separation point are also shown. The calculated pressure is slightly higher than
the experimental data.% The predicted 5% is in excelient agreement with the data upstream of
the shock wave. The theoretical 8* for the converged strong interaction solution downstream of
the shock is slightly lower than the experimented value probably due to the uncertainty in spec-
ifying the boundary-layer conditions downstream of the shock. More thorough analysis of the
local shock-boundary layer interaction is needed to improve this aspect of the calculation and to

handle the case of separation right at the shock.
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c. Nash-Macdonald Method

The Nash-Macdonald method® is o semi-empirical formula tor the solution of the momen-

tum thickness. @, in the integral boundary-layer equation given by von Karmun

Jde v O d Uc Tw
TT:-1II+3—M:)D——1-+ = (0la)
ax ¢ e ax pc‘UE
where the skin triction is determined by
Tw 5 u.e
= =| F?Z 2.4711 In FR + 4.78 (61b)
¢ v
ch~ e
, 1724 -2
t 1.5G + ——— - 106.87
G-+ 200

Quantities FC. FR‘ and G are functions of the Mach number at the edge of boundary-layer and
can be tound in Ref. 67. The application of the method is straightforward. Some typical results
68-70 71

S

are shown in Fig. 13 along with other theorie and experimental data.

d. Stratford-Beavers Method

Similar to the foregoing method, semi-empirical formulas for calculating compressible

N o . -
turbulent boundary-layers were developed by Stratford and Beavers.”? The formulas for the
momentum and the boundary-layer displacement thickness are

For freestream Reynolds numbers of the order of 109,

M2\-07 -1/8
¢
6 = 0.036 ]+—"|0 s Reg o
§* = 0.046 (1 + 0.8M§>0-44 s Re "1

For freestream Reynolds numbers of the order of 107,

M- Y07 -1/6
€
6 = 0.022 '+ s Reg (63)
§* = 0.028 {1 +0.8M7 |04 s Re 10
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where
l X
s = W/W d (64)
[v] M 4
W = _—e_’ (65)
| +0.3M5
~ sUC B a, sM,
RcS =T T R (66)
o (1 +0.2M5)‘

I'he suttix o refers to stagnation. The quantity w is the exponent in the viscosity-temperature
relation u o« T | 4 reasonable value for w being 0.75, except at very high temperatures, where
w = 0.5,

The results of the shape factor 8%/ found by Eqgs. (62) and (63) compare fairly closely to
th

that of a /0™ power law, where n = 7 and 9 (see Fig, 14).

IV. TRANSONIC VISCOUS-INVISCID INTERACTIONS
1. DESCRIPTION OF VISCOUS-INVISCID TRANSONIC FLOWS

The schematic of the transonic viscous-inviscid interaction over an airfoil surface is repre-
sented in Fig. 15, The embedded supersonic region of a supercritical flow has to be terminated
by a shock wave to bring the downstream flow back to the subsonic state, and the shock foot is
smeared into a series of compression waves as a result of viscous-inviscid interactions. The
presence of an adverse pressure gradient due to the compression before the shock usually causes
the boundary layer to scparate from the surface for cither laminar or turbulent boundary layers.
Howcever, the flow behavior near the shock differs considerably, depending on whether the
boundary layer is laminar or turbulent ahead of the point where it mects the shock 3 The pres-
sure rises more rapidly for turbulent than for laminar Iuycrs,3 4 while the displacement thickness
of the boundary layer increases considerably through the shock. more so for laminar than for
turbulent Iuycrs.: Reynolds number has a strong effect on the interaction in the case of laminar
boundary layers but almost no effect for turbulent flows.># In any event, the basic features of
boundary-layer thickening and pressure rising are common for both layers.

Beyond the separation point, the boundary-layer tflow is divided into two regions by the

73-75 The flow above this streamline includes all the fluid contained in the

dividing streamline.
boundary layer just upstream of separation. Below this streamiline, the flow yields a separated
pattern with reversed profile near the wall. Two kinds of separated-tlow pattern have been ob-
served hy Pearcey et al.5 for turbulent boundary layers. One deals with a local separation bubble

caused by the shock : the other is involved with rear separation and depends on the magnitude of
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the pressure gradient approaching the trailing edge and on the upstream history of the boundary

layer.

The pressure rises continuously in the subsonic portion although its gradient decreases
steadily after the toe of the shock.® This feature differs from that of a supersonic free inter-
action in which the incident shock is reflected as an expansion fan which turns the flow toward
the surface and thus enables the reattachment of the boundary layer. In the transonic case.
however, the shock is an embedded one which serves as part of the compression process of the
flow over the rear of the airfoil; whereas, the boundary layer, especially the laminar one. does
not have sufficient energy for reattachment against continuous adverse pressure gradients and,
therefore, remains separated all the way toward the trailing edge (see Fig. 16).

The mechanism of turbulent viscous-inviscid interaction differs from that of laminar inter-
action. In the turbulent case, when the flow enters the strong interaction zone . it turns away
from the surface in response to a rapid separation bubble growth, triggered from the toe of the
shock:see Ref. 5. For the latter case. the compression before the shock is fairly long and smooth

and involves no rapid change in the flow angle at the edge of the boundary layer:see Fig. 17.
2. STRONG VERSUS WEAK INTERACTION FORMULATIONS

In analysis of viscous transonic flows. it is necessary for the analytical model of the viscous
system to have the capability for allowing communication of positive pressure disturbance tfrom
the einbedded shock wave upstream through the subsonic portion of the boundary layer. The
surface pressure should be calculated by the viscous equations rather than specified by the
inviscid system. The communication of the pressure disturbance through the viscous layer be-
comes possibie because of the direct influence between the pressure and boundary layer thick-
ness in a subcritical boundary layer. At local supersonic speeds, a thickening subcritical
boundary layer produces a rise in pressure in the outer stream which causes further thickening
ot the boundary Iayer.s()

The viscous system is linked to the inviscid system through a common variable by which
the change of flow properties of the outer flow may be transmitted to the inner flow or vice
versa. [t reflects the physical phenomenon of the shock wave/boundary-layer interaction process
wherein there is a steep pressure rise before the arrival of the shock wave because of the influence
exerted by the shock. This concept of the new viscous system has been explored in supersonic
flows by Klin¢berg and Lees>? and Lees and Reeves® and in transonic flows by Klineberg and
Stcgcr.x and Tai.10.15

The new system model is referred to as the strong interaction formulation. Other formula-
tions, such as the usual houndary-layer system by which the viscous effect is accounted for by
the displacement correction or analyvtical technigues which do not involve tlow separation. are
referred to as the weak interaction, The strong interaction formulation may be applied to
attached, as well as separated, boundary layers. When applied to attached flows. the boundary

layer eventually separates. I the same flow were to be treated by the weak interaction system.

21




numerical experiments indicate that the boundary layer would remain attached until shock jump
was encountered. This gives tfurther indication that the strong interaction system is more suitable
in simulating the shock wave boundary-layer interaction process than are the usual boundary-
layer approaches. On the other hand, the use of weak interaction formulation is preferred in the
torward portion ot the airfoil where the viscous-inviscid interaction is presumably weak.

3. CALCULATION OF WEAK INTERACTIONS
a. Boundary Layer Correction

As in the usual procedure, the boundary-layer quantities are calculated based on the speci-
tied inviscid pressure distribution, and the inviscid solution is updated based on the surface aug-
mented by the boundary-layer displacement thickness.* In so doing, the two flows are con-
nected at the locus of the boundary-layer displacement thickness. The latter serves as a “‘stream-
line™ through which mass transfer or more importantly, direct communication between the outer
inviscid and inner boundary-layer flows is prohibited. The inviscid solution is then repeated
until a converged solution is obtained upon satisfying converging criterion after several iterations.

Existing transonic codes by Bauer et al. 3% and Carlson3% determine the viscous effects by
such a procedure. The Nash-Macdonald method®’ for turbulent boundary layers is used in both
codes (weak interaction in the laminar case is simply neglected). In the case of transonic cascade
flows, Gliebe coupled an inviscid flow solution by a finite-difference method and a viscous flow
solution by the Stratford-Beavers method.’? Fig. 18 shows typical results of the boundary-
layer effect on the blade of a cascade flow evaluated by Gliebe.!8

b. Analytical Method

Mason and lng«:r14 have developed an analytical method for calculating the transonic
viscous-inviscid interaction involving a weak normal shock wave impinging on unseparated turbu-
lent boundary layers. The interaction field is considered as a multisubregion problem and the
resulting viscous transonic flow system is solved by the Fourier transformation method. The
theoretical model is valid for weak shock conditions with the Mach number ahead of the shock
not very near unity. The schematic of the model which is shown in Fig. 19 includes outer mixed
tlow and inner rotational disturbance flow with a Lighthill sublayer.

¢. Asymptotic Expansion Method

|

Melnik and Grossman,'3 on the other hand, formulated an asymptotic expansion method

for analyzing the interaction of a normal shock wave with an unseparated turbulent boundary

*Another way of accounting for the boundary-layer effect is to determine an equivalent source distribution
o = d(U,5*)/ds as suggested by I.ighthill.-]"
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layer on a flat surtuce at transonic speeds. The interaction involves an outer, inviscid rotational

layer, a constant shear stress layer near the wall, and 4 blended layer between the two. Fig. 20

shows typical results of the asymptotic method compared with those of the Manson-Inger

scheme. 14

4. CALCULATION OF STRONG INTERACTIONS

a. Laminar Viscous-Inviscid Interaction

The calculation is illustrated by using the integral boundary layer method coupled with an
inviscid solution by the method of integral relations.!® The coordinate system for the coupling
is shown in Fig. 21. The ordinary differential cquations for the inviscid external flow, reduced

by the method of integral relations, are (for simplicity only those at the edge of the boundary

layer are written here)

dU
dx

dv
dx -

and those for the viscous system]0 are

*

ds;

ds

1]
oyl

da
—'=F,

ds 2

dM

<
ds

(30)bis

(31 )bis

(50)bis

(5 Dbis

(5 2)bis

The viscous system is coupled directly to the inviscid system by the induced angle of invis-

cid streamline at the edge of the boundary layer

Ve (invis.)

@ = sinl | m—/——————
Mcac (viscous)

(67)

where V. is calculated by the inviscid system, while the velocity magnitude M, a, is obtained by

the viscous system. The variable © is a common variable for both inviscid and viscous svstems

and. therefore, governs the viscous-inviscid interaction process. Since the two tlows are coupled

i,




by the inviscid streamline angle rather than the streamline itself, mass transter between the outer
inviscid and inner boundary-layer flows is allowed in accordance with the continuity equations

by which the variable @ is introduced in the viscous system

do* d ]
— . ¥ ) m—
s tan® + (6-96 )ds [ln(PeUe) (68)

The value of ©. which is determined by the viscous-inviscid interaction, has a direct bearing on

the growth of the boundary layer.

The strong interaction system is applied at some distance preceding the inviscid shock loca-
tion. The exact initial location of the strong interaction region is determined by an iterative
process. 10

Results of calculations at supercritical freestream Mach numbers are presented for both a
o percent circular arc and an NACA 0015 airfoil.

Fig. 22 gives the boundary-layer displacement thickness throughout a 6 percent circular
arc airtoil at M, = 0.868 and Re, = 6.9 x 104, The thickening of the boundary layer in the
forward portion follows a similar trend as that found by Schubauer, using the Karman-Polhausen
method”” : however, the strong interaction calculation gives a far more realistic § distribution
pattern in the rear portion. The boundary layer is practically of the Blasius type (a = 1.857) in
the leading-cdge region and varies slightly throughout the forward portion of the airfoil. [t re-
mains unseparated through the embedded supersonic region although the viscous-inviscid inter-
action has been strong since x = 0.37. The separation point is found when a = 0 which corres-
ponds to zero shearing stress at the wall,

The boundary layer keeps separated over the rear of the airfoil where small adverse pressure
gradients are generated by continuous compression of the outer subsonic flow. This is a physical
feature of the transonic viscous-inviscid interaction since by compression, the flow ought to
return almost to the freestream value downstream. After leaving the trailing edge. the viscous
wake contains a reversed flow for a distance and then turns to forward flow downstream. The
location of the rear stagnation point agrees well with that found by Klineberg and Stcgcrx under
similar flow conditions,

Theoretical results of pressure distribution for the 6 percent circular are airfoil compare
very well with recent taminar experimental data of Collins and Kruppm as presented in Fig. 23,
not only in the pressure distribution but also in the separation point. The small diftference in
freestream Mach number between theory and experiment was deliberately selected to offset
wind-tunnel interference effects.”? Fig. 23 also shows the inviscid isentropic and nonisentropic
solutions obtained by using the method of integral relations with three different shock condi-
tions. Note that the shock foot is smeared as a result of the strong viscous-inviscid interaction.
The inviscid result with AS > 0and 8 = 75 degrees simulates the flow best in the region near
the shock : however, it still deviates from the viscous data in the trailing cdge. The difference is

obviously attributable to the thickening of the laminar boundary layer toward the trailing edge.
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On the other hand, comparisons between theory and experiment for the NASA 0015 air-

toil were jeopardized because of lack of available laminar test data. Measurements available for
this case were taken from Graham et 4180 at Reynolds numbers on the order of 2 x 109 the
flows were, theretore, turbulent. The calculated luminar result is in good agreement with the
experimental data in the forward portion of the airfoil; however, there is considerable dis-
crepancy in pressure near the trailing edge: see Fig. 24, The deviation may be attributed to the
extended separation of the laminar boundary layer, which would be unlikely to occur if the
boundary layer were turbulent. Since the method of using reversed-tlow velocity profile was
originally attempted for application to cases with small adverse pressure grudientsgl . this dis-
crepancy also raised questions regarding the validity of its use in separated boundary layers with
strong adverse pressure gradients.

Finally, Fig. 25 shows the overall flowficld of the NACA 0015 airfoil at M, = 0.729,
o =4 degrees, and Re, = 0.145 x 108, based on the chord length. The calculated boundary
layer is fairly thin because of the high Reynolds number used. The separated boundary layer on
the tower side is thicker than that on the upper side because the latter is developed from a very
thin attached layer in an accelerating external tlow prior to the shock wave. In any case. the
basic features ot the transonic viscous-inviscid interaction are clearly seen. The compression
waves in the region near the shock are represented by the Mach lines. Being normal to the edge
of the boundary layer. the Much one line represents the end of a smearing shock toe rather than
the whole shock. The mechanism of the compression has been designated in the literature as

e

the “lambda shock.”™ which serves as part of the decelerating process of the flow over the rear of
the airtoil. where the laminar boundary layer does not have sutficient energy for reattachment
against continuous adverse pressure giadients and, therefore. remains separated all the way to
the trailing edge.

It is also interesting to note that the viscous-inviscid interaction process terminates the em-
bedded supersonic tlow carlier than does the inviscid shock. The result is not surprising since the
interaction process has weakened the strength of the shock wave;in turn, it moves the shock
forward.*> 82 However, because of the change of the local velocity distribution, the height of
the supersonic pocket determined by the theory is slightly higher than that obtained by the
inviscid solution; it remains to be verified by appropriate experiment and other valid analysis.

The integral boundary layer method can also be coupled with a finite ditference scheme
carried out by Klineberg and Steger.8 There the V  values were prescribed rather than calcu-
lated. Although the prescribed V. values were improved successively. the viscous and inviscid
tflows had to be treated separately cven for the strong interaction. More importantly. in the
indirect coupling as such, it would be difficult to allow direct communication, including the mass

transfer, between the outer inviscid flow and the boundary layer flow.
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b. Turbulent Viscous-Inviscid Interaction

Because of the convenience for direct coupling of the outer inviscid and viscous flows, the
method of integral relation is used again for the inviscid solution in the illustration for calculating

I3 The coordinate system and inviscid flow equations

the turbulent viscous-inviscid interaction,
are the same as tor the laminar case ; Eqgs. (30) and (31). The equations for the viscous system

. . . . . P , . 3.
are derived by adding the continuity equation to the original Kuhn-Niclsen method ! ie..

)
d dé
— fudnp -u 5 =-¥V 69
JE udn - u, dE V. (69)
0
I'he resulting viscous system is!®
du
™ . ] T N
B B By at Q
. . . dé
Eap sy Bsg -d—E =1 Q, (70)
du,
by ko Egy —_— Q,

where Eij and Qj are presented in Ref. 15, The system is valid for both attached and separated
tlows.

Similar to the laminar unalysis.'O the viscous system is coupled directly to the inviscid sys-
tem by the induced angle of the inviscid streamline at the edge of the boundary layer, which
allows mass transfer between the two flows in accordance with the continuity equation. Eq. (69).
The strong interaction system is applicd at some distance before the inviscid shock wave location.
As opposed to the laminar case. the flow angle at the edge of the boundary laver is adjusted.

The reason for the adjustment is that in the turbulent case. when the flow enters the strong
interaction zone. it turns away from the surface in response to a rapid separation bubble growth,
triggered from the toe of the shock :see Ref. 5. The boundary layer is attached at the start of
the strong interaction region: however, it usually separates in a short distance. Computation is
then switched to the subroutines based on separated velocity profiles of the strong interaction
system.

Results of calculations at supercritical freestream Mach numbers are presented tor a 10-
pereent thickness bump and an NACA 0015 airfoil at an angle of attack. The bump is basically
a4 10-percent circular arc, taired with cosine curves at both ends. Fig. 26 gives the typical velocity
profile at different stations over the 10-percent thickness bump at M, =0.7325 and Re, = 1.758
x 100, The profile at x = 0.2 is the initial profile, calculated by using Schlichting’s skin friction
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83

formula based on a power law distribution.®? Good comparison between the calculated and 1
available measured profiles of Alber et al. 0 at x = 0.5 and 0.875 indicates the adequacy of the "
theoretical approach.

Fig. 27 shows the distribution of the friction velocity over the same bump. Note that the
friction velocity in the strong interaction region is calculated in the analysis, rather than pre-
scribed as in Ref. 12, The flow separates in a fairly short distance after it enters the strong inter-
action zone influenced by the shock. The friction velocity remains almost constant downstream
of the separation point and then increases gradually toward reattachment. The calculated pres-
sure distribution compares fairly well with recent turbulent experimental data of Alber et al 00 4
presented in Fig. 28. Also plotted are the inviscid solutions obtained by using the method of

inanbl Mo

integral relations, with and without entropy change across the shock. The agreement between ,
theoretical and experimental results is good both for pressure distribution and separation point, '
Note that the shock foot is smeared as a result of the strong viscous-inviscid interaction. The

compression starts at x = 0.575 where the strong interaction begins. The turbulent boundary i 1
layer is attached throughout the supersonic region and the strong interaction starts in tront of . ’
the shock wave. Flow separation takes place downstream of the shock wave at a peak Mach 1
number of 1.14. The trend is consistent with that found experimentally by Alber et al 0 for .
cases with Mp < 1.32. The turbulent boundary layer reattaches downstream of the bump.
The difference between the theoretical and experimental pressures in the rear of the bump is i

attributed to the insufficient damping effect in the inner layer eddy viscosity model. There is

equations.
The flow over an NACA 0015 airfoil at M, = 0.729 and o = 4 degrees has been investi-

also reason to believe that it may be due to overprediction of the flow by the strong interaction : ’
gated as an example for the lifting case. This particular flow condition has been calculated in ; ]

the laminar unalysis.m There the agreement between the laminar theory and the experiment
was good except in the rear of the airfoil, where the flow could have become turbulent. There-
fore. the turbulent viscous-inviscid interaction model is employed for flows in the rear portion
of the airfoil. The transition zone is assumed to be short enough so that the continuity of
boundary layer propertics may be maintained. The corresponding initial turbulent shear velocity
is then estimated based on similar velocity profiles for both laminar and turbulent boundary
layers. The weak interaction system is used in gctual computation after the strong interaction
formulation fails to produce a converged solution. Calculated results are given in Fig. 29 along i
with the previous laminar solution !0 and the experimental data of Graham ct al 80 I ‘
As indicated in Fig. 29, the pressure values over the rear region of the airtoil calculated by ,‘
the present turbuient theory compare fairly well with the experimental data, Ref. 80, which were
measured at Reynolds numbers on the order of 2 x 10°. The flow over the upper surface has

undergone a strong viscous-inviscid interaction in the vicinity of the shock wave between x =

v

0.34 and 0.6, but it seems to have returned to a weak interaction process after X = 0.6:cven the
boundary layer is still separated thereafter. The boundary layer remains separated all the way to

the trailing edge. It follows a similar flow pattern to that observed by Pearcey et al.”




5. VISCOUS-INVISCID INTERACTION IN SEPARATED FLOW REGION

Although the strong interaction tormulation s usetul and necessary tor the shock wave
region, it sutters a problem ot accuracy and numencal stability mn the separated tlow regton. | he
reason tor this s beliesed to be attributed wo the hasic feature of the strong interaction system
that the proessure s calealated simultancously with the boundary layer thickness. The results of
the integral methods are therefore, much more sensitive to the veloaity protiles used for either
faminar or turbulent boundary layers. Any inadequacies in velocity profiles employed will be
nugnificd in the strong interaction system, as opposed to being suppressed in the usual boundary
laver caleulations,

fn gencral, the velocity profiles tor separated tlows are more ditficult to define than tor
attached boundary Lavers. In the toregoing laminar case. the reversed-tlow profile was originally

. . . . N
attempted for application to cases with small adverse pressare gradients. It~ use in separated

boundary layers with strong adverse pressure gradients mtroduced some discrepancy m agree-
ment between the theory and the experiment in the tranling edge rcgmn.'“

In the case of turbulent tlows, on the other hand, a numernical ditficulty s encountered in
using the strong interaction system. Very tine adjustment of tfriction velocity u, has to be made
tor achieving the convergence of the flow downstream of the separation point.! e Fig. 30.
Beciuse of the convergence problem, it is proper to use the weak interaction system (presstre
prescribed) rather than the strong interaction formulation near and att the separation point .

These arguments suggest that in the separated flow region. a weak iteraction system might
provide more reliable results than the strong interaction tormulation. The point of switching
from the strong to the weak interaction eqaations has to be determined by numerical

experiments.

V. APPLICATION TO CASCADE FLOWS

The tlow in a cascade at transonic speeds is tar more comples than the steady | two=dimen-
sional tlow past an airfoil in free air. A comprehensive review ot the flow in transonic com-
pressors has been given by Kerrebrock 2T apply the previous techniques to cascade flows
nvolving transonic viscous-inviscid interactions, assumptions that are necessary are that the tow
in a cascade has axisynmmetrie stream surfaces and that the flow on these surtaces can be treated
two dimensionally. Such flows very nearly exist in cascades where the blade herght s small
compared to the radius trom the centerline ot the cascade. They are called quast two-dimen-

. - 5
sional flows ®

The schematic of a quast two-dimensional ffow i an axisymmetrie stream sur-
tuce is depicted in Fig. 310 The approximation represents an idealized situation tor the comple
unsteady tlow in transonic compressors. [Uis, nevertheless, usetul tor quahtative myvestipation ol

the influence of various design parimeters.
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The governing equation for a quasi two-dimensional compressible inviscid flow in an

axisymmetric stream surface represented by coordinates (¢, 0) s8>
1 0 {loy a (1 ay aR 1 9y aR
— e | o — — | — — —— — = ) — 7
iR 20 (p ae) * R3 (hp az) * 3 hp ok T (7h
where
w = constant rotation of the cascade
R = distance measured from the axis
h = blade height

The stream function Y is defined by

3y
€ = PhV (72)

oy
50 - " phRU

The boundary conditions are g = 0 on the blade surfaces.

Eq. (71) can be solved by the finite difference-relaxation method. similar to the procedure
employed in a two-dimensional potential flow about an airtoil.

To facilitate calculating the strong viscous-inviscid interactions and to account for the non-
isentropic effect of the embedded shock, it was suggested in the foregoing discussions that the
hybrid method is mostly suitable for the purpose. That is, the fTow in the shock region is solved
by the method of integral relations with the initial and boundary conditions provided by the
finite difference-relaxation approach. To implement the method ot integral relations, the
governing equations for the quasi two-dimensional channel tlow between the cascade blade

surfaces are written in primitive form as

Continui a (pl)) s dpVy  pU d (Rl .
ontinuty FY: Raoc. ~ ~Rh T ()
3 pUT+P)  dUV)  pU~ d(Rh , LR i
£§-Momentum At + R0 - " Rh Tt + p(V+ R R O 4
ApliV) 3 (pV- +P) pUV d (R AN L\ dh .
0 -Momentum 9t + R0 T TRT 0 ol T*-w TE— (RS
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I'ntropy

With a boundary condition of zero normal velocity on the surface, Eqgs. (73) through (76)
can be solved by the method ol integral relations with the aid of the N=2-strip scheme * The
final solution is achicved by updating solutions between the finite difference method tor the
overall tlow and the method of integral relations for the shock region.

The inviscid solution so obtained is convenient to be coupled with cither taminar or turbu-
lent viscous systems tor strong interaction between the shock wave and the boundary layer.

A weak interaction Tormulation should be applied for conventional boundary layer regions.

including a separated flow zone downstream of the shock wave.
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Figure 4 — Extension of Freestream Boundary to “Infinity™ for Flowfield Solved by
the Method of Integral Relations

——— METHOD OF INTEGRAL RELATIONS42
14 | —-— UNSTEADY FINITE DIFFERENCE (MAGNUS AND YOSHIHARA%)
° EXPERIMENT (STIVERS49)

NORMAL SHOCK, AS = 0
/i~ -NORMAL SHOCK, AS .- 0

i

04 - CARTESIAN COORDINATE SYSTEM o
~MIXED COORDINATE SYSTEM <1__ _ i
- -
0.2 — - . . ; : .
0 0.2 0.4 0.6 08 10

Figure 5 Pressure Distribution on an NACA 64A410 Airfoil atM_ =072 and a = 4
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RADIAL DIRECTION

Figure 31 — Quasi Two-Dimensional Flow on Axisymmetric Stream Surface
(lllustration based on Ref. 85)
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